Equine bone marrow mesenchymal or amniotic epithelial stem cells as feeder in a model for thein vitroculture of bovine embryos

Author:

Lange-Consiglio Anna,Maggio Valentina,Pellegrino Laura,Cremonesi Fausto

Abstract

SummaryVarious studies have shown that thein vitroculture environment is one of the key determinants of the blastocyst output. In the present study we investigated the effects of co-culturing bovine embryos with equine bone marrow mesenchymal stem cells (BM-MSCs) or equine amniotic epithelial stem cells (AE-SCs) onin vitroblastocysts development. BM specimens were obtained aseptically from sternal aspirates of horses under local anaesthesia and the isolated cells were resuspended in Dulbecco Modified Earle's Medium supplemented with 10 ng/ml of basic fibroblast growth factor (bFGF). Amniotic membranes were obtained from fresh placentas and, to release the AE cells, amniotic fragments were incubated with 0.05% trypsin for 45 min. Separated AE cells were plated in standard culture medium containing 10 ng/ml epidermal growth factor (EGF). Seven hundred and five cumulus–oocyte complexes were used and, after IVM and IVF, cumulus-free presumptive zygotes were randomly transferred into one of three co-culture systems in which they were cultured up to day 7: (1) co-culture with cumulus cells (control); (2) co-culture with BM-MSCs; and (3) co-culture with AE-SCs. Statistical analyses were performed by ANOVA. Blastocyst developmental rates were significantly different (p< 0.001) between control, AE-SCs and BM-MSCs (respectively 35.45, 41.84 and 30.09%). In conclusion, the AE-SC monolayer create a more suitable microenvironment necessary for inducing local cell activation and proliferation of the growing embryos in comparison with BM-MSCs and cumulus cells. It can be suggested that these cells secrete biologically active substances, including signalling molecules and growth factors of epithelial nature, different to those of the BM cells of mesenchymal origin.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3