Intranuclear characteristics of pig oocytes stained with brilliant cresyl blue and nucleologenesis of resulting embryos

Author:

Murin Matej,Strejcek Frantisek,Bartkova Alexandra,Morovic MartinORCID,Benc Michal,Prochazka Radek,Lucas-Hahn Andrea,Pendovski Lazo,Laurincik Jozef

Abstract

SummaryBrilliant cresyl blue (BCB) vital labelling is a powerful method for analyzing the quality of porcine cumulus–oocyte complexes. Our aim was to investigate the correlation between the selection of porcine oocytes using BCB labelling and selected intranuclear characteristics of porcine oocytes and parthenotes. Moreover, BCB labelling was correlated with the diameter of the oocyte and the developmental potential of the parthenotes. The following methods were used: BCB labelling, measurement of the diameter of the oocyte, parthenogenetic activation, immunocytochemistry, transmission electron microscopy, enucleation and relative protein concentration (RPC) analysis. We determined that the diameter of the oocytes in the BCB-positive (BCB+) group was significantly larger than in the BCB-negative (BCB−) group. Immediately after oocyte selection according to BCB labelling, we found significant difference in chromatin configuration between the analyzed groups. BCB+ oocytes were significantly better at maturation than BCB− oocytes. BCB+ embryos were significantly more competent at cleaving and in their ability to reach the blastocyst stage than BCB− embryos. Ultrastructural analyses showed that the formation of active nucleoli in the BCB+ group started at the 8-cell stage. Conversely, most BCB− embryos at the 8-cell and 16-cell stages were fragmented. No statistically significant difference in RPC in nucleolus precursor bodies (NPBs) between BCB+ and BCB− oocytes was found. We can conclude that BCB labelling could be suitable for assessing the quality of porcine oocytes. Moreover, the evaluation of RPC indicates that the quantitative content of proteins in NPB is already established in growing oocytes.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3