Biphasic assembly of the contractile apparatus during the first two cell division cycles in zebrafish embryos

Author:

Webb Sarah E.,Goulet Cécile,Chan Ching Man,Yuen Michael Y. F.,Miller Andrew L.

Abstract

SummaryThe large and optically clear embryos of the zebrafish provide an excellent model system in which to study the dynamic assembly of the essential contractile band components, actin and myosin, via double fluorescent labelling in combination with confocal microscopy. We report the rapid appearance (i.e. within <2 min) of a restricted arc of F-actin patches along the prospective furrow plane in a central, apical region of the blastodisc cortex. These patches then fused with each other end-to-end forming multiple actin cables, which were subsequently bundled together forming an F-actin band. During this initial assembly phase, the F-actin-based structure did not elongate laterally, but was still restricted to an arc extending ~15° either side of the blastodisc apex. This initial assembly phase was then followed by an extension phase, where additional F-actin patches were added to each end of the original arc, thus extending it out to the edges of the blastodisc. The dynamics of phosphorylated myosin light chain 2 (MLC2) recruitment to this F-actin scaffold also reflect the two-phase nature of the contractile apparatus assembly. MLC2 was not associated with the initial F-actin arc, but MLC2 clusters were recruited and assembled into the extending ends of the band. We propose that the MLC2-free central region of the contractile apparatus acts to position and then extend the cleavage furrow in the correct plane, while the actomyosin ends alone generate the force required for furrow ingression. This biphasic assembly strategy may be required to successfully divide the early cells of large embryos.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3