Abstract
AbstractThe presence of unobserved node-specific heterogeneity in exponential random graph models (ERGM) is a general concern, both with respect to model validity as well as estimation instability. We, therefore, include node-specific random effects in the ERGM that account for unobserved heterogeneity in the network. This leads to a mixed model with parametric as well as random coefficients, labelled as mixed ERGM. Estimation is carried out by iterating between approximate pseudolikelihood estimation for the random effects and maximum likelihood estimation for the remaining parameters in the model. This approach provides a stable algorithm, which allows to fit nodal heterogeneity effects even for large scale networks. We also propose model selection based on the Akaike Information Criterion to check for node-specific heterogeneity.
Publisher
Cambridge University Press (CUP)
Subject
Sociology and Political Science,Communication,Social Psychology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献