Robot performance measurement and calibration using a 3D computer vision system

Author:

Preising B.,Hisa T. C.

Abstract

SummaryPresent day robot systems are manufactured to perform within industry accepted tolerances. However, to use such systems for tasks requiring high precision, various methods of robot calibration are generally required. These procedures can improve the accuracy of a robot within a small volume of the robot's workspace. The objective of this paper is to demonstrate the use of a single camera 3D computer vision system as a position sensor in order to perform robot calibration. A vision feedback scheme, termed Vision-guided Robot Control (VRC), is described which can improve the accuracy of a robot in an on-line iterative manner. This system demonstrates the advantage that can be achieved by a Cartesian space robot control scheme when end effector position/orientation are actually sensed instead ofcalculated from the kinematic equations. The degree of accuracy is determined by setting a tolerance level for each of the six robot Cartesian space coordinates. In general, a small tolerance level requires a large number of iterations in order to position the end effector, and a large tolerance level requires fewer iterations. The viability of using a vision system for robot calibration is demonstrated by experimentally showing that the accuracy of a robot can be drastically improved. In addition, the vision system can also be used to determine the repeatability and accuracy of a robot in a simple, efficient, and quick manner. Experimental work with an IBM Electric Drive Robot (EDR) and the proposed vision system produced a 97 and a 145 fold improvement in the position and orientation accuracy of the robot, respectively.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference41 articles.

1. Robot calibration in an industrial environment

2. Positioning error analysis for robot manipulators with all rotary joints

3. 17. Puskorius G. V. and Feldkamp L. A. , “Global Calibration of a Robot/Vision System” IEEE, 190–195 (1987).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey of Research for Performance Measurement of Mobile Manipulators;Journal of Research of the National Institute of Standards and Technology;2016-06

2. Combined time-of-flight and Doppler ultrasonic tracking system for better performance in robot tracking;IEE Proceedings - Science, Measurement and Technology;2000-09-01

3. On vision systems identification with application to fixed-camera robotic systems;International Journal of Imaging Systems and Technology;2000

4. Modeling, optimizing and simulating robot calibration with accuracy improvement;Journal of the Brazilian Society of Mechanical Sciences;1999-09

5. Robotic TCF and rigid-body calibration methods;Robotica;1997-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3