A synthesis method of spatial over-constrained mechanisms based on kinematics of serial manipulators

Author:

Lee Fu-Hsiung,Hsu Kuan-LunORCID

Abstract

AbstractThis paper proposes a modular method based on the kinematics of serial manipulators to synthesize over-constrained mechanisms. Because the PPP manipulator has an unlimited work space, its end-effector can be constrained to trace a trajectory identical to those of another open-chain manipulator, including a P joint single link and an RR dyad. In doing so, two open-chain manipulators can be concatenated to form closed-loop mechanisms, including PPPP, PPPRR, or PPCR mechanisms. To design over-constrained mechanisms efficiently, the Denavit–Hartenberg convention is adopted to describe the PPP manipulator kinematically, and the Euler angles are utilized to derive geometric constraints of synthesized over-constrained mechanisms. Next, kinematic equations of the PPP manipulator can be modularized and applicable to analyze different closed-loop mechanisms. At last, by adjusting link lengths, twisted angles, and joint angles of the synthesized PPPRR and PPCR mechanisms to form other over-constrained mechanisms configurationally. The novelty of this research lies in modularizing the over-constrained mechanism into two movable serial manipulators whose end-effectors share identical trajectory and orientation. Thus, defining geometrical constraints of the over-constrained mechanism can be transformed into finding angular parameters describing the orientation of these two serial manipulators such that the end-effector coordinate system of two manipulators can properly be aligned. Angular parameters of the serial manipulators can be easily determined by means of Euler angles, which yields an advantage of easy calculation since it only involves the computation of Euler angles parameters. The presented method can be extended to the kinematic synthesis and analysis of more spatial closed-loop mechanisms.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3