Improved gray wolf optimization algorithm integrating A* algorithm for path planning of mobile charging robots

Author:

Liu ShangjunnanORCID,Liu Shuhai,Xiao Huaping

Abstract

AbstractWith the popularization of electric vehicles, early built parking lots cannot solve the charging problem of a large number of electric vehicles. Mobile charging robots have autonomous navigation and complete charging functions, which make up for this deficiency. However, there are static obstacles in the parking lot that are random and constantly changing their position, which requires a stable and fast iterative path planning method. The gray wolf optimization (GWO) algorithm is one of the optimization algorithms, which has the advantages of fast iteration speed and stability, but it has the drawback of easily falling into local optimization problems. This article first addresses this issue by improving the fitness function and position update of the GWO algorithm and then optimizing the convergence factor. Subsequently, the fitness function of the improved gray wolf optimization (IGWO) algorithm was further improved based on the minimum cost equation of the A* algorithm. The key coefficients AC1 and AC2 of two different fitness functions, Fitness1 and Fitness2, were discussed. The improved gray wolf optimization algorithm integrating A* algorithm (A*-IGWO) has improved the number of iterations and path length compared to the GWO algorithm in parking lots path planning problems.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference45 articles.

1. Dynamic path planning for mobile robot based on particle swarm optimization;Wang;AIP Conf. Proc.,2017

2. Economic order quantity models for items with imperfect quality and emission considerations;Kazemi;Int. J. Syst. Sci. Oper. Logist.,2018

3. Investigating reduced path planning strategy for differential wheeled mobile robot;Raouf;ROBOTICA,2020

4. RIME: A physics-based optimization

5. The path planning for mobile robot based on bat algorithm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3