Global enhancement network underwater archaeology scene parsing method

Author:

Pan JunyanORCID,Jia Jishen,Cai LeiORCID

Abstract

AbstractUnderwater archaeology is of great significance for historical and cultural transmission and preservation of underwater heritage, but it is also a challenging task. Underwater heritage is located in an environment with high sediment content, objects are mostly buried, and the water is turbid, resulting in some of the features of objects missing or blurred, making it difficult to accurately identify and understand the semantics of various objects in the scene. To tackle these issues, this paper proposes a global enhancement network (GENet) underwater scene parsing method. We introduce adaptive dilated convolution by adding an extra regression layer, which can automatically deduce adaptive dilated coefficients according to the different scene objects. In addition, considering the easy confusion in the process of fuzzy feature classification, an enhancement classification network is proposed to increase the difference between various types of probabilities by reducing the loss function. We verified the validity of the proposed model by conducting numerous experiments on the Underwater Shipwreck Scenes (USS) dataset. We achieve state-of-the-art performance compared to the current state-of-the-art algorithm under three different conditions: conventional, relic semi-buried, and turbidified water quality. The experimental results show that the proposed algorithm performs best in different situations. To verify the generalizability of the proposed algorithm, we conducted comparative experiments on the current publicly available Cityscapes, ADE20K, and the underwater dataset SUIM. The experimental results show that this paper achieves good performance on the public dataset, indicating that the proposed algorithm is generalizable.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference37 articles.

1. CEGFNet: Common extraction and gate fusion network for scene parsing of remote sensing images;Zhou;IEEE Trans. Geosci. Remote Sens.,2021

2. Knowledge-guided semantic transfer network for few-shot image recognition;Li;IEEE Trans. Neural. Netw. Learn. Syst.,2023

3. Global-Guided Selective Context Network for Scene Parsing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3