Modeling and optimization of motion for inchworm-inspired magnetically driven soft robot

Author:

Di YueORCID,Zhang Yuyan,Wen Yintang,Ren Yaxue

Abstract

AbstractAt present, the research of soft crawling robot pays more attention to the material manufacturing, but neglects the robot modeling. The high degree of freedom of the soft crawling robot makes it more difficult to establish its motion model and analyzes its motion performance. The centimeter-level wireless driven soft crawling robot has great advantages and application scenarios in narrow space exploration. Therefore, this paper proposed a soft robot driven by magnetism to crawling inchworm. By studying the crawling behavior of inchworm and the characteristics of flexible materials driven by magnetism, the structure of the soft robot was designed and the motion model of inchworm was established. The motion model is analyzed and simulated, the structure size of the robot is optimized, and the effectiveness of the model is verified by experiments. The robot’s crawling motion is realized by coupling the structure of the robot’s torso and legs with the flexible magnetic film. Driven by the alternating magnetic field, the maximum motion speed of the robot is 28.24 mm/s. At the same time, the robot can also move in narrow space such as pipes, which can satisfy the centimeter-level space detection and ensure the high efficiency, providing a new idea for narrow space detection.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3