Abstract
AbstractThis work presents a new formulation to holistically control four cooperative multi-rotor drones controlled in two pairs. This approach uses a modular relative Jacobian with components consisting of the Jacobians of each individual drone. This type of controller relies mainly on the relative motion between the drones, consequently releasing unnecessary constraints inherent to the control of drones in absolute motion. We present the derivations of all the necessary equations of the modular relative Jacobian to control the four multi-rotor drones. We also present the derivations of the Jacobian for each drone. We implement our proposed method in the Gazebo RotorS simulation using four hexa-rotor drones modeled from Ascending Technologies called firefly drones. We present the simulation results and analyze them to show the effectiveness of our proposed approach.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献