Neural-net tuned PID control of a parallel type mechanism with force feedback for virtual reality applications

Author:

Karkoub M.,Her M.-G.,Hsu K.-S.,Chen C.-Y.

Abstract

This paper explores a new type of a parallel platform human interface manipulator based on virtual reality (VR) for mechanism design applications. A motion control of a six-link robot manipulator actuated by three active joints is presented here. The main components of the system include a user interface, a software simulating the environment, and a VR control system. The model of the VR system is built based on a force feedback behavior that enables the operator to feel the actual force feedback from the virtual environment just as he/she would from the real environment. A primary stabilizing controller is used to develop a haptic interface device where realistic simulations of the dynamic interaction forces between a human operator and the simulated virtual object/mechanism is required. The stability and performance of the system are studied and analyzed based on the Nyquist stability criterion. Experiments on cutting virtual clay are used to validate the theoretical developments. It was shown that the experimental and theoretical results are in good agreement.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synchronous Tracking Control of Parallel Manipulators Using Cross-coupling Approach;The International Journal of Robotics Research;2006-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3