Approximate Stiffness Modelling and Stiffness Defect Identification for a Heavy-load Parallel Manipulator

Author:

Fan Shuai,Fan Shouwen

Abstract

SummaryWhen using parallel manipulators as machine tools, their stiffness is an important factor in the quality of the produced products. This paper presents an overall approximate stiffness model for a heavy-load parallel manipulator, which considers the effects of actuator stiffness, joint clearance, joint contact deformation, and limb deformation. Based on the principle of virtual work and the introduced modified parameters, the proposed overall compliance matrix successfully takes four factors into a unified expression. To obtain the overall compliance matrix, the approximate stiffness models of the joint clearance, joint contact deformation, and limb deformation are given. In addition, by combining the statistical simulation including the random uncertainties and the proposed approximate stiffness models as the basis of the magnitudes for each random variable, an approach based on the expected trajectory and external load is also proposed for stiffness defect identification such that the estimation is more accurate and reliable. Finally, a numerical example of the 1PU+3UPS parallel manipulator and a discussion are presented to demonstrate the practicability of the proposed stiffness model and defect identification approach. After modifying the structure parameters of the defective components, the prototype experiences a significant stiffness improvement.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference39 articles.

1. An improved approach to the inverse dynamic analysis of parallel manipulators by a given virtual screw

2. Probabilistic mechanism analysis with bounded random dimension variables

3. Interval analysis for certified numerical solution of problems in robotics;Merlet;Int. J. Ap. Mat.Com-Pol,2009

4. Sensitivity analysis of parallel manipulators using an interval linearization method

5. A general approach for geometric error modeling of lower mobility parallel manipulators;Liu;J. Mech. Rob,2011

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3