Trajectory tracking control of an underwater vehicle in the presence of disturbance, measurement errors, and actuator dynamic and nonlinearity

Author:

Hosseini MostafaORCID,Ranjbar Noei Abolfazl,Rostami Seyed Jalil Sadati

Abstract

AbstractUnderwater vehicles are rich systems with attractive and challenging properties such as nonlinearities, external disturbances, and underactuated dynamics. These make the design of an advanced and robust controller quite a challenging task. This paper focuses on designing a model-free high-order sliding mode controller in a six-degree-of-freedom trajectory tracking task. The purpose of the control is accurate trajectory tracking and considerably reducing the chattering phenomenon in situations where the remotely operated vehicle (ROV) works in the presence of external disturbances, measurement errors, and actuator dynamics and nonlinearity, which is not seen in previous research. To demonstrate the stability of the closed-loop system, the Lyapunov theory is employed to ensure the asymptotic stability of tracking errors. A linear Kalman filter for estimating measurement errors is proposed to be used to correct positioning system outputs (speed, position, and attitude). In a hardware-in-the-loop test, the proposed controller for the ROV is tested in a real-time application, considering external disturbances, measurement errors, and actual thrusters. In addition, comparing the outcomes with the performance of the PID controller and the supper twisting controller shows the superiority of the proposed controller. Due to the existence of the measurement noise, spectrum analysis is also performed.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference31 articles.

1. [1] Hosseini, M. . Improvement in ROV Horizontal Plane Cruising Using Adaptive Method. In: 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, Iran (2016).

2. Second-order sliding mode control with experimental application

3. Robust platoon control of underactuated autonomous underwater vehicles subjected to nonlinearities, uncertainties and range and angle constraints

4. Adaptive chattering-free sliding mode control of chaotic systems with unknown input nonlinearity via smooth hyperbolic tangent function;Fang;Math. Probl. Eng.,2019

5. Modeling and parameter identification of a DC motor using constraint optimization technique;Adewusi;IOSR J. Mech. Civ. Eng.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous Trajectory Tracking Control Strategy of Overactuated Remotely Operated Vehicle;2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE);2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3