Abstract
Abstract
The paper proposes a novel method to detect graspable handles for picking objects from a confined and cluttered space, such as the bins of a rack in a retail warehouse. The proposed method combines color and depth curvature information to create a Gaussian mixture model that can segment the target object from its background and imposes the geometrical constraints of a two-finger gripper to localize the graspable regions. This helps in overcoming the limitations of a poorly trained deep network object detector and provides a simple and efficient method for grasp pose detection that does not require a priori knowledge about object geometry and can be implemented online with near real-time performance. The efficacy of the proposed approach is demonstrated through simulation as well as real-world experiment.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献