Abstract
Abstract
This study is concerned with the tracking control problem for nonlinear uncertain robotic systems in the presence of unknown actuator nonlinearities. A novel adaptive sliding controller is designed based on a robust disturbance observer without any prior knowledge of actuator nonlinearities and system dynamics. The proposed control strategy can guarantee that the tracking error eventually converges to an arbitrarily small neighborhood of zero. Simulation results are included to demonstrate the effectiveness and superiority of the proposed strategy.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering