Robot motion planning with task specifications via regular languages

Author:

McMahon James,Plaku Erion

Abstract

SUMMARYThis paper presents an efficient approach for planning collision-free and dynamically feasible trajectories that enable a mobile robot to carry out tasks specified as regular languages over workspace regions. A sampling-based tree search is conducted over the feasible motions and over an abstraction obtained by combining the automaton representing the regular language with a workspace decomposition. The abstraction is used to partition the motion tree into equivalence classes and estimate the feasibility of reaching accepting automaton states from these equivalence classes. The partition is continually refined to discover new ways to expand the search. Comparisons to related work show significant speedups.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symbolic State Space Optimization for Long Horizon Mobile Manipulation Planning;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

2. Visually Grounded Task and Motion Planning for Mobile Manipulation;2022 International Conference on Robotics and Automation (ICRA);2022-05-23

3. Autonomous Data Collection With Dynamic Goals and Communication Constraints for Marine Vehicles;IEEE Transactions on Automation Science and Engineering;2022

4. Dynamic Multi-Goal Motion Planning with Range Constraints for Autonomous Underwater Vehicles Following Surface Vehicles;2021 IEEE 17th International Conference on Automation Science and Engineering (CASE);2021-08-23

5. Automata Guided Semi-Decentralized Multi-Agent Reinforcement Learning;2020 American Control Conference (ACC);2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3