Selection of trajectory parameters for dynamic pouring tasks based on exploitation-driven updates of local metamodels

Author:

Langsfeld Joshua D.,Kaipa Krishnanand N.,Gupta Satyandra K.

Abstract

SUMMARYWe present an approach that allows a robot to generate trajectories to perform a set of instances of a task using few physical trials. Specifically, we address manipulation tasks which are highly challenging to simulate due to complex dynamics. Our approach allows a robot to create a model from initial exploratory experiments and subsequently improve it to find trajectory parameters to successfully perform a given task instance. First, in a model generation phase, local models are constructed in the vicinity of previously conducted experiments that explain both task function behavior and estimated divergence of the generated model from the true model when moving within the neighborhood of each experiment. Second, in an exploitation-driven updating phase, these generated models are used to guide parameter selection given a desired task outcome and the models are updated based on the actual outcome of the task execution. The local models are built within adaptively chosen neighborhoods, thereby allowing the algorithm to capture arbitrarily complex function landscapes. We first validate our approach by testing it on a synthetic non-linear function approximation problem, where we also analyze the benefit of the core approach features. We then show results with a physical robot performing a dynamic fluid pouring task. Real robot results reveal that the correct pouring parameters for a new pour volume can be learned quite rapidly, with a limited number of exploratory experiments.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Framework for Improving Information Content of Human Demonstrations for Enabling Robots to Acquire Complex Tool Manipulation Skills;2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2023-08-28

2. Focused Adaptation of Dynamics Models for Deformable Object Manipulation;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

3. Autonomous Precision Pouring From Unknown Containers;IEEE Robotics and Automation Letters;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3