Author:
Vallés Marina,Cazalilla José,Valera Ángel,Mata Vicente,Page Álvaro,Díaz-Rodríguez Miguel
Abstract
SUMMARYThis paper presents the design, kinematics, dynamics and control of a low-cost parallel rehabilitation robot developed at the Universitat Politècnica de Valencia. Several position and force controllers have been tested to ensure accurate tracking performances. An orthopedic boot, equipped with a force sensor, has been placed over the platform of the parallel robot to perform exercises for injured ankles. Passive, active-assistive and active-resistive exercises have been implemented to train dorsi/plantar flexion, inversion and eversion ankle movements. In order to implement the controllers, the component-based middleware Orocos has been used with the advantage over other solutions that the whole scheme control can be implemented modularly. These modules are independent and can be configured and reconfigured in both configuration and runtime. This means that no specific knowledge is needed by medical staff, for example, to carry out rehabilitation exercises using this low-cost parallel robot. The integration between Orocos and ROS, with a CAD model displaying the actual position of the rehabilitation robot in real time, makes it possible to develop a teleoperation application. In addition, a teleoperated rehabilitation exercise can be performed by a specialist using a Wiimote (or any other Bluetooth device).
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Reference44 articles.
1. A systematic review of bilateral upper limb training devices for poststroke rehabilitation;van Delden;Stroke Res., Treat.,2012
2. M. Girone , G. Burdea and M. Bouzit , “The Rutgers Ankle Orthopedic Rehabilitation Interface,” Proceedings of the ASME International Mechanical Enge. Congr. Dyn. Syst. Control Div., Nashville, TN (Nov. 1999) vol. 67, pp. 305–312.
3. Reconfigurable ankle rehabilitation robot for various exercises
4. Modelling and Control of Robot Manipulators
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献