Abstract
AbstractThis study proposes a method based on reinforcement learning (RL) for point-to-point and dynamic reference position tracking control of a planar cable-driven parallel robots, which is a multi-input multi-output system (MIMO). The method eliminates the use of a tension distribution algorithm in controlling the system’s dynamics and inherently optimizes the cable tensions based on the reward function during the learning process. The deep deterministic policy gradient algorithm is utilized for training the RL agents in point-to-point and dynamic reference tracking tasks. The performances of the two agents are tested on their specifically trained tasks. Moreover, we also implement the agent trained for point-to-point tasks on the dynamic reference tracking and vice versa. The performances of the RL agents are compared with a classical PD controller. The results show that RL can perform quite well without the requirement of designing different controllers for each task if the system’s dynamics is learned well.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献