Simulation-based fast collision detection for scaled polyhedral objects in motion by exploiting analytical contact equations

Author:

Liu Jing-Sin,Pan Wen-Hua,Ku Wen-Yang,Tsao Y.-H.,Chang Y.-Z.

Abstract

SUMMARYBased on the results of the study of convex object motion1 (J. Hopcroft and G. Wilfong, “Motion of objects in contact,” Int. J. Robot. Res., 4(4), 32–46 (1986)), this paper addresses the problem of exact collision detection of a pair of scaled convex polyhedra in relative motion, and determines the contact conditions of tangential contact features, arbitrary relative motion involving translation and rotation, and uniform scaling of the objects about a fixed point. We propose a new concept of the decision curve based on analytical contact equations that characterize a continuum of scaling factors (or a single scaling factor), which ensures that a pair of objects undergoing a scaling transformation will maintain the same tangential contact feature pair (or make instantaneous tangential contact feature transitions). We propose a reliable simulation-based approach to construct the decision curve by hybridizing analytical contact equations and conventional collision detection method, called the Fast Collision Detection Method (FCDM). This method can determine whether two scaled objects will make contact at specific tangential contact features (vertices, edges, or faces) under particular uniform scaling factors and after distinctive relative motion with better accuracy and less computational time than the existing collision detection methods. Finally, we demonstrate our approach for solving motion design in simple assembly/disassembly problems.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference29 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3