Autonomous aerial flight path inspection using advanced manufacturing techniques

Author:

Rizia Mousumi,Reyes-Munoz Julio A.,Ortega Angel G.,Choudhuri Ahsan,Flores-Abad AngelORCID

Abstract

SUMMARYRobotic systems have shown capabilities to perform inspection tasks in dangerous and difficult-to-access environments, such as those found in different components of power plants. However, most of the current robotic inspection technology is designed for specific components. Aerial robots, commonly termed as Drones, have raised an option to inspect a wider range of structural components. Nevertheless, current aerial inspecting technology still relies on a human pilot with limited line of sight, field of view and a reduced perception as the drone flies away, which prevents performing close-quarter inspection in intricate, structurally complex and GPS-denied environments. This work introduces offline inspection path generation methods based on robotics-integrated to manufacturing techniques. One method uses computer-aided manufacturing (CAM) techniques and the other an additive manufacturing (AM) approach to generate the flight path. That is to say, the drone would fly along the path described by a 3D (Three Dimensional) printer’s extruder or a CNC (Computer Numerical Control) machining tool, enabling to fly very close the structure even in physical structures with a complex geometry. Once the trajectories are generated, they are introduced for its validation in the Gazebo robotics simulator. Simulation results demonstrate the proper performance of the method and confirm that this approach can be used for close inspection of structuralcomponents.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3