Abstract
AbstractThis study presents a novel 4-DOF two-limb gripper mechanism with a simple design that offers high adaptability for different objects. The mechanism integrates a three-finger end effector and employs a 2-DOF driving system in both serial kinematic chains mounted on the base, addressing performance problems caused by moving actuators. First, the architecture of the gripper mechanism is described, and its mobility is verified. Next, the inverse and forward kinematic problems are solved, and the Jacobian matrix is derived to analyze the singularity conditions. The inverse and forward singularity surfaces are plotted. The workspace is investigated using a search method, and two indices, manipulability and dexterity, are studied. The proposed manipulator’s parameters are optimized for improved dexterity. The novel gripper mechanism has high potential for grasping different types of parts within a large workspace, making it a valuable addition to the field of robotics.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献