Symbolic position analysis for three 6-DOF parallel mechanisms and new insight

Author:

Du ZhongqiuORCID,Li Ju,Meng Qingmei,Ye Pengda,Shen HuipingORCID

Abstract

AbstractThe authors‘ previous research has demonstrated that parallel mechanisms (PMs) with hybrid branch chains (i.e., branch chains containing planar or spatial loops) can possess symbolic forward position (SFP) solutions and motion decoupling (MD). In order to further study the conditions of a three-chain six degrees of freedom (DOF) parallel mechanism with SFP and MD, this paper proposes one 6-DOF branch chain A and two 5-DOF branch chains B and C. Based on these, a class of four 6-DOF PMs with three branch chains is devised. The symbolic position analysis of three of four such PMs is performed consequently, featuring partial MD and SFPs, which reveals that if the position or orientation of a point on the moving platform can be determined by the position of the hybrid branch chain, the PM exhibits partial MD and SFP. Finally, the accuracy of the symbolized forward and inverse solution algorithms is verified through numerical examples. This research brings a new insight into the design and position analysis of 6-DOF PMs, particularly those with SFP and partial MD.

Publisher

Cambridge University Press (CUP)

Reference30 articles.

1. [20] Lin, W. , Duffy, J. and Griffs, M. , “Forward Displacement Analyses of the 4-4 Stewart Platforms,” In: Proceedings of the 21st Biennial Mechanism Conference. September 16-19, Gainesville, United States. New York (Univ. of Florida, ASME, 1990) pp. 263–269.

2. Position analysis of 3-urSR parallel mechanism with 6-DOF;Yu;Trans Chinese Society Agri Mach,2011

3. [6] Lin, W. , Crane, C. D. and Duffy, J. , “Closed-Form Forward Displacement Analysis of the 4-5 in-Parallel Platform,” In: Proceedings of the 22nd Biennial Mechanisms Conference, Scottsdale, AZ, USA. Scottsdale (ASME, 1992) pp. 521–527.

4. Forward position analysis of a 6-DOF 3-urPS parallel mechanism;Gao;China Mech Eng,2007

5. A constructive predictor-corrector algorithm for the direct position kinematics problem for a general 6-6 stewart platform;Dasgupta;Mech Mach Theory,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3