Remote monitoring and control of the 2-DoF robotic manipulators over the internet

Author:

Hokmi Sadra,Haghi Shahab,Farhadi AlirezaORCID

Abstract

AbstractThis article is concerned with remote monitoring and control of the 2-degrees of freedom (DoF) robotic manipulators, which have nonlinear dynamics over the packet erasure channel, which is an abstract model for communication over the Internet, WiFi, or Zigbee modules. This type of communication is subject to imperfections, such as random packet dropout and rate distortion. These imperfections cause a significant challenge for monitoring and control of robotic manipulators in the industrial environments because sensitive data, such as sensor data and control commands may not ever reach to their destination resulting in significant performance degradation. Therefore, the effects of these imperfections must be compensated. In this article, we apply two coding and control techniques previously developed for the telepresence ad teleoperation of autonomous vehicles to compensate the effects of the above communication imperfections for remote monitoring and control of the 2-DoF robotic manipulators controlled over the packet erasure channel. To achieve this goal, we design a new linear controller and a new nonlinear controller for the 2-DoF robotic manipulators over the packet erasure channel. The first technique is based on the linearization method and the second technique uses a nonlinear controller. The performances of these two techniques for remote monitoring and control of robotic manipulators are evaluated and compared with each other in this paper. We illustrate their satisfactory performances in the presence of severe communication imperfections.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Reference26 articles.

1. Control Over Noisy Channels

2. Event-based LQG control over networks with random transmission delays and packet losses;Dolgov;IFAC Proc,2013

3. Big data analytics as a solution for threat analysis and risk mitigation in smart cities: A review;Jain;Int. Res. J,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3