A comprehensive review of the latest path planning developments for multi-robot formation systems

Author:

Abujabal Nour,Fareh Raouf,Sinan SaifORCID,Baziyad MohammedORCID,Bettayeb Maamar

Abstract

AbstractThere has been a continuous interest in multi-robot formation systems in the last few years due to several significant advantages such as robustness, scalability, and efficiency. However, multi-robot formation systems suffer from well-known problems such as energy consumption, processing speed, and security. Therefore, developers are continuously researching for optimal solutions that can gather the benefits of multi-robot formation systems while overcoming the possible challenges. A backbone process required by any multi-robot system is path planning. Thus, path planning for multi-robot systems is a recent top research topic. However, the literature lacks a recent comprehensive review of path planning works designed for multi-robot systems. The aim of this review paper is to provide a comprehensive assessment and an insightful look into various path planning techniques developed in multi-robot formation systems, in addition to highlighting the basic problems involved in this field. This will allow the reader to discover the research gaps that must be solved for a better path planning experience for multi-robot formation systems. Finally, an illustrative comparative example is presented at the end of the paper to show the advantages and disadvantages of some popular path planning techniques.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3