SLAMB&MAI: a comprehensive methodology for SLAM benchmark and map accuracy improvement

Author:

Liu ShengshuORCID,Sun Erhui,Dong Xin

Abstract

AbstractSLAM Benchmark plays a pivotal role in the field by providing a common ground for performance evaluation. In this paper, a novel methodology of simultaneous localization and mapping benchmark and map accuracy improvement (SLAMB&MAI) is introduced. It can objectively evaluate errors of localization and mapping, and further improve map accuracy by utilizing evaluation results as feedback. The proposed benchmark transforms all elements into a global frame and measures the errors between them. The comprehensiveness consists in the benchmark of both localization and mapping, and the objectivity consists in the consideration of the correlation between localization and mapping by the preservation of the original pose relations between all reference frames. The map accuracy improvement is realized by first obtaining the optimization that minimizes the errors between the estimated trajectory and ground truth trajectory and then applying it to the estimated map. The experimental results showed that the map accuracy can be improved by an average of 15%. The optimization that yields minimal localization errors is obtained by the proposed Centre Point Registration-Iterative Closest Point (CPR-ICP). This proposed Iterative Closest Point (ICP) variant pre-aligns two point clouds by their centroids and least square planes and then uses traditional ICP to minimize the error between them. The experimental results showed that CPR-ICP outperformed traditional ICP, especially in cases involving large-scale environments. To the extent of our knowledge, this is the first work that can not only objectively benchmark both localization and mapping but also revise the estimated map and increase its accuracy, which provides insights into the acquisition of ground truth map and robot navigation.

Publisher

Cambridge University Press (CUP)

Reference38 articles.

1. [4] Wulf, O. , Nuchter, A. , Hertzberg, J. and Wagner, B. , “Ground Truth Evaluation of Large Urban 6D SLAM,” In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA (IEEE, 2007) pp. 650–657.

2. Iterative point matching for registration of free-form curves and surfaces;Zhang;Int J Comput Vision,1994

3. [15] Seitz, S. M. , Curless, B. , Diebel, J. , Scharstein, D. and Szeliski, R. , “A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms,” In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06), New York, NY (IEEE, 2006) pp. 519–528.

4. [19] Besl, P. J. and McKay, N. D. , “Method for Registration of 3-D Shapes,” In: Proceedings SPIE 1611, Sensor Fusion IV: Control Paradigms and Data Structures (1992).

5. [10] Funke, J. and Pietzsch, T. , “A Framework For Evaluating Visual SLAM,” In: Proceedings of the British Machine Vision Conference (BMVC) (2009).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3