FAT-based robust adaptive controller design for electrically direct-driven robots using Phillips q-Bernstein operators

Author:

Izadbakhsh AlirezaORCID,Kalat Ali Akbarzadeh,Nikdel Nazila

Abstract

AbstractThis article proposes a robust and adaptive controller for industrial robot arms with multiple degrees of freedom without the need for velocity measurement. Many of the controllers designed for manipulators are model-based and require detailed knowledge of the system model. In contrast to these methods, this paper proposes a model-free controller using the Philips q-Bernstein operator as universal approximator. The designed controller can approximate uncertainties including external disturbances and unmodeled dynamics based on its universal approximation capability. Besides, most of the controllers revealed for robot arms are torque-based, which is not a realistic presumption from a practical point of view. In the proposed control method, the voltage applied to the actuator is considered as the control signal. However, unlike many voltage-based methods, the need to know the exact models of the system and the actuator has been eliminated in the presented method. Also, adaptive rules are extracted during the Lyapunov analysis to ensure system stability. Finally, to analyze the performance of the presented controller, this method is simulated for an industrial robot arm, and the results are analyzed. The proposed methodology is also compared to those of a strong state-of-the-art approximator, the Chebyshev neural network.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3