Analysis of sliding behavior of a biped robot in centroid acceleration space

Author:

Senoo Taku,Ishikawa Masatoshi

Abstract

SUMMARYIn this article, a two-dimensional analysis of biped robot sliding dynamics is performed. First, the dynamics of a biped robot based on feet-slip are derived using the coulomb friction model. The state transition can be formulated in the centroid acceleration space whose diagram is defined as a “triangle of sliding friction” (TSF). The TSF's characteristics are explained by focusing on comparison with the cone of friction which has a similar state decision diagram. Next, for the behavioral simulation of a concrete model, a 2-DOF biped robot is used to analyze the sliding features in terms of the asymmetry of the dynamics of each leg. Finally, the sliding characteristics are applied to the two tasks of running and somersaulting. The results show the robot takes short rapid repetitive steps for running based on frictional asymmetry and theoretically based on torque asymmetry can make one revolution using the large angular momentum acquired during sliding motion.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Foot–Terrain Interaction Mechanics for Heavy-Duty Legged Robots;Applied Sciences;2024-07-26

2. Inertial Propulsion Robot Using the Shape Characteristics of a Streamlined Body Frame;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

3. Emergency ejection characteristics of space manipulator multi-body system;Robotica;2023-08-14

4. Baseball Robots Based on Sensory-Motor Integration;2021 21st International Conference on Control, Automation and Systems (ICCAS);2021-10-12

5. Humanoid Control Under Interchangeable Fixed and Sliding Unilateral Contacts;IEEE Robotics and Automation Letters;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3