Online pattern recognition of lower limb movements based on sEMG signals and its application in real-time rehabilitation training

Author:

Ye YeORCID,Zhu Ming-xia,Ou Chang-wei,Wang Bing-zhuORCID,Wang Lu,Xie Neng-gang

Abstract

AbstractAn online pattern recognition method of lower limb movements is proposed based on the personalized surface electromyography (sEMG) signals, and the corresponding experimental researches are performed in the rehabilitation training. Further, a wireless wearable acquisition instrument is used. Based on this instrument, a host computer for the personal online recognition and real-time control of rehabilitation training is developed. Three time-domain features and two features in the nonlinear dynamics are selected as the joint set of the characteristic values for the sEMG signals. Then a particle swarm optimization (PSO) algorithm is used to optimize the feature channels, and a k-nearest neighbor (KNN) algorithm and the extreme learning machine (ELM) algorithm are combined to classify and recognize individual sample data. Based on the multi-pose lower limb rehabilitation robot, the real-time motion recognition and the corresponding rehabilitation training are carried out by using the online personalized classifier. The experimental results of eight subjects indicate that it takes only 6 min to build an online personalized classifier for the four types of the lower limb movements. The recognition between switches of different rehabilitation training movements is timely and accurate, with an average recognition accuracy of more than 95%. These results demonstrate that this system has a strong practicability.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3