Exploration-exploitation-based trajectory tracking of mobile robots using Gaussian processes and model predictive control

Author:

Eschmann HannesORCID,Ebel Henrik,Eberhard PeterORCID

Abstract

AbstractMobile robots are a key component for the automation of many tasks that either require high precision or are deemed too hazardous for human personnel. One of the typical duties for mobile robots in the industrial sector is to perform trajectory tracking, which involves pursuing a specific path through both space and time. In this paper, an iterative learning-based procedure for highly accurate tracking is proposed. This contribution shows how data-based techniques, namely Gaussian process regression, can be used to tailor a motion model to a specific reoccurring reference. The procedure is capable of explorative behavior meaning that the robot automatically explores states around the prescribed trajectory, enriching the data set for learning and increasing the robustness and practical training accuracy. The trade-off between highly accurate tracking and exploration is done automatically by an optimization-based reference generator using a suitable cost function minimizing the posterior variance of the underlying Gaussian process model. While this study focuses on omnidirectional mobile robots, the scheme can be applied to a wide range of mobile robots. The effectiveness of this approach is validated in meaningful real-world experiments on a custom-built omnidirectional mobile robot where it is shown that explorative behavior can outperform purely exploitative approaches.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3