Optimal periodic gain scheduling for bipedal walking with hybrid dynamics

Author:

Harel M.,Agranovich G.,Brand M.

Abstract

SUMMARYWe present an optimal gain scheduling control design for bipedal walking with minimum tracking error. We obtained a linear approximation by linearizing the nonlinear hybrid dynamic model about a nominal periodic trajectory. This linearization allows us to identify the linear model as a linear periodic system. An optimal feedback was designed using Bellman's dynamic programming. The linear periodic system allows us to determine a linear quadratic regulator (LQR) for a single period and to set the Hamilton-Jacobi-Bellman (HJB) function in a linear quadratic form. In this way, the dynamic programming yielded an admissible continuous gain scheduling that was designed with regard to the hybrid dynamics of the system. We tuned the optimization parameters such that the tracking error and the average energy consumption are minimized. Due to linearization, we were able to examine the stability of the approximated periodic system achieved by the periodic gain according to Floquet's theory, by calculating the monodromy matrix of the closed-loop hybrid system. In addition to determining stability, the eigenvalues of this approximated monodromy matrix allowed us to evaluate the settling time of the system. This approach presents a direct method for optimal solution of locomotion control according to a given reference trajectory.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference21 articles.

1. C. Kirtley , “CGA Normative Gait Database,” Hong Kong Polytechnic University, (2005).

2. Contributions to the theory of optimal control;Kalman;Bol. Soc. Mat. Mexicana,1960

3. ZERO-MOMENT POINT — THIRTY FIVE YEARS OF ITS LIFE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3