Multi-objective optimization-based method for kinematic posture prediction: development and validation

Author:

Yang Jingzhou (James),Marler Tim,Rahmatalla Salam

Abstract

SUMMARYPosture prediction plays an important role in product design and manufacturing. There is a need to develop a more efficient method for predicting realistic human posture. This paper presents a method based on multi-objective optimization (MOO) for kinematic posture prediction and experimental validation. The predicted posture is formulated as a multi-objective optimization problem. The hypothesis is that human performance measures (cost functions) govern how humans move. Twelve subjects, divided into four groups according to different percentiles, participated in the experiment. Four realistic in-vehicle tasks requiring both simple and complex functionality of the human simulations were chosen. The subjects were asked to reach the four target points, and the joint centers for the wrist, elbow, and shoulder and the joint angle of the elbow were recorded using a motion capture system. We used these data to validate our model. The validation criteria comprise R-square and confidence intervals. Various physics factors were included in human performance measures. The weighted sum of different human performance measures was used as the objective function for posture prediction. A two-domain approach was also investigated to validate the simulated postures. The coefficients of determinant for both within-percentiles and cross-percentiles are larger than 0.70. The MOO-based approach can predict realistic upper body postures in real time and can easily incorporate different scenarios in the formulation. This validated method can be deployed in the digital human package as a design tool.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of human initial operation situation in confined space with a multi-task deep neural network;Engineering Applications of Artificial Intelligence;2024-12

2. Comparative study of orthogonal moments for human postures recognition;Engineering Applications of Artificial Intelligence;2023-04

3. A systematic review on digital human models in assembly process planning;The International Journal of Advanced Manufacturing Technology;2023-01-10

4. Human motion prediction for intelligent construction: A review;Automation in Construction;2022-10

5. Predicting Standing Reach Postures using Deep Neural Networks;Proceedings of the Human Factors and Ergonomics Society Annual Meeting;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3