Bidding coordination algorithm with CFC and an emotion switch

Author:

Yao ZhifengORCID,Ye Xiufen,Dai Xuefeng

Abstract

SUMMARYExploration is a fundamental problem in robotics, and multi-robot systems exploration has been extensively studied in this field. In order to overcome the problem of a non-optimal target being selected in the exploration process, a revised single linkage clustering frontier cell (CFC) algorithm is proposed to calculate the exploration benefit of all available frontier cells. Moreover, there exist unexplored islands for most of the bidding-based multi-robot coordination algorithms in the exploration of unknown environments. To deal with this problem, some rules switched by emotion states are proposed. So, the proposed bidding coordination algorithm with CFC and an emotion switch has a hierarchical architecture. The upper level is modeled as an automaton, which is used to represent emotion status, and the emotion variables decide whether a robot will participate in a bid and explore an unknown area abiding by the walking rules. In the lower level, the robots perform bidding activities with CFC and the walking rules according to the emotion variables. We tested and evaluated our approach by means of experiments both in a simulated environment and with real robots. The experiments results demonstrate that the exploration efficiency is improved, and our algorithm has a greater coverage rate than classic bidding-based coordination algorithms.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Agent Robot Systems: Analysis, Classification, Applications, Challenges and Directions;2024 IEEE International Conference on Industrial Technology (ICIT);2024-03-25

2. Forecast-Island and Bidding A*-Euclidean Selecting Boustrophedon Coordination Algorithm for Exploration;International Journal of Pattern Recognition and Artificial Intelligence;2021-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3