Optimal Architecture Planning of Modules for Reconfigurable Manipulators

Author:

Dogra AnubhavORCID,Padhee Srikant Sekhar,Singla Ekta

Abstract

SUMMARY Modules are requisite for the realization of modular reconfigurable manipulators. The design of modules in literature mainly revolves around geometric aspects and features such as lengths, connectivity and adaptivity. Optimizing and designing the modules based on dynamic performance is considered as a challenge here. The present paper introduces an Architecture-Prominent-Sectioning (APS) strategy for the planning of architecture of modules such that a reconfigurable manipulator possesses minimal joint torques during its operations. Proposed here is the transferring of complete structure into an equivalent system, perform optimization and map the resulting arrangement into possible architecture. The strategy has been applied on a set of modular configurations considering three-primitive-paths. The possibility of getting advanced/complex shapes is also discussed to incorporate the idea of a modular library.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference27 articles.

1. Torque minimisation of the 2-DOF serial manipulators based on minimum energy consideration and optimum mass redistribution

2. [17] Ramirez, D. , Kotlarski, J. and Ortmaier, T. , “Combined Structural-Dimensional Synthesis of Robot Manipulators for Minimal Energy Consumption,” Proceedings of Tagungsband des 2. Kongresses Montage Handhabung Industrieroboter (2017) pp. 63–71.

3. Dynamics and Balancing of Multibody Systems

4. [9] Seonghun, H. , Dongeun, C. , Sungchul, K. , Lee, H. and Lee, W. , “Design of Manually Reconfigurable Modular Manipulator with Three Revolute Joints and Links,” Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (2016) pp. 5210–5215.

5. Optimum Design of Serial Robots

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3