Model-free adaptive robust control based on TDE for robot with disturbance and input saturation

Author:

Liu XiaORCID,Wang Lu,Yang Yong

Abstract

AbstractA model-free adaptive robust control based on time delay estimation (TDE) is proposed for robot in the presence of disturbance and input saturation. TDE is utilized to estimate the complicated nonlinear terms of the robot including unknown dynamics and disturbance, and a TDE error observer is developed to estimate the inevitable TDE error. When the input torque of the robot exceeds the upper or lower limit of the input saturation, an auxiliary system and a saturation deviation boundary adaptive law are employed to mitigate the negative impact of input saturation on the position tracking. Finally, the robust control law is obtained by backstepping. The stability of the closed-loop system is proved by Lyapunov functions, and the validity of the proposed method is demonstrated by comparative simulations and experiments. Compared with the model-based controllers and other model-free controllers, the proposed method does not necessitate the accurate dynamic model of the complicated system and with lower computation. Moreover, it can guarantee the desired position tracking performance of the robot even subject to disturbance and input saturation simultaneously.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference45 articles.

1. Model-free adaptive sliding mode control with adjustable funnel boundary for robot manipulators with uncertainties;Wang;Rev. Sci. Instrum.,2021

2. Tracking control via switched Integral Sliding Mode with application to robot manipulators

3. Neural Control of Robot Manipulators With Trajectory Tracking Constraints and Input Saturation

4. Formation control of non-holonomic mobile robots: Predictive data-driven fuzzy compensator;Wang;Mathematics,2023

5. A time-delayed control scheme using adaptive law with time-varying boundedness for robot manipulators;Baek;Appl. Sci. Basel,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3