Dynamic feedforward control of spatial cable-driven hyper-redundant manipulators for on-orbit servicing

Author:

Mu Zonggao,Liu Tianliang,Xu Wenfu,Lou Yunjiang,Liang Bin

Abstract

SUMMARYThe hyper-redundant manipulators are suitable for working in the constrained on-orbit servicing environment due to the extreme flexibility. However, its modelling and control are very challenging due to the characteristics of non-linearity and strong coupling. In this paper, considering the multi-level mapping among the motors, cables, joints, and end-effector, a proportional derivative (PD) with dynamic feedforward compensation control system is designed. The corresponding control system is divided into five parts: controller, planner, actuator, manipulator, and sensor. The actual control torque consisting of the desired feedforward torque and the feedback torque is generated by the controller. In order to improve the tracking accuracy and maintain rapid response, the torque, which is calculated by the dynamics model of the traditional joint-driven manipulator, is regarded as the desired feedforward torque. The parameters of interest are the angle and velocity of the universal joint and motors. The planner plans and converts the desired parameters of the universal joint to corresponding motors. Combining with the feedback angles and velocities signals of the corresponding motors, the feedback torque can be calculated by the PD control module. Finally, typical cases of six universal joints (12DOFs) manipulators are simulated and experimented. The results demonstrate that the method is very efficient for controlling spatial cable-driven hyper-redundant manipulators.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference28 articles.

1. Autonomous rendezvous and docking with nonfull field of view for tethered space robot;Huang;Int. J. Aerosp. Eng.,2017

2. Universal Dynamic Model of the Tethered Space Robot

3. Practical Kinematics for Real-Time Implementation of Continuum Robots

4. Neural Network Based Kinematic Control of the Hyper-Redundant Snake-Like Manipulator;Liu;Proceedings of International Symposium on Neural Networks: Advances in Neural Networks,2007

5. Mechanics Modeling of Tendon-Driven Continuum Manipulators

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3