Contact force cancelation in robot impedance control by target impedance modification

Author:

Huang An-ChyauORCID,Lee Kun-Ju,Du Wei-Lin

Abstract

AbstractA force sensorless impedance controller is proposed in this paper for robot manipulators without using force estimators. From the observation of the impedance control law, the force feedback term can be canceled if the inertia matrix in the target impedance is the same as the robot inertia matrix. However, the inertia matrix in the target impedance is almost always a constant matrix, while the robot inertia matrix is a function of the robot configuration, and hence, they may not be identical in general. A modification of the coefficient matrix for the contact force term in the target impedance is suggested in this paper to enable cancelation of the force feedback term in the impedance control law so that a force sensorless impedance controller without using force estimators can be obtained. The tracking performance in the free space phase and the motion trajectory in the compliant motion phase of the new design are almost the same as those in the traditional impedance control. Modification of the inertia matrix in the target impedance will result in small variations of the contact force which is acceptable in practical applications. For robot manipulators containing uncertainties, an adaptive version of the new controller is also developed in this paper to give satisfactory performance without the need for force sensors. Rigorous mathematical justification in closed-loop stability is given in detail, and computer simulations are performed to verify the efficacy of the proposed design.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3