Operational performance analysis of spiral capsule robot in multiphase fluid

Author:

Liang Liang,Chen Bai,Tang Yong,Xu Yan,Liu Yu

Abstract

SUMMARYMinimally invasive surgery is a developing direction of modern medicine. With the successful development of controllable capsule endoscopies, capsule robots are very popular in the field of gastrointestinal medicine. At present, the study of intestinal robots is aimed at the pipeline environment of a single-phase liquid flow. But there exist food residues (i.e. solid particles) or liquid foods in the actual intestine, so intestinal fluid should be liquid–solid or liquid–liquid two-phase mixed fluid. For inner spiral capsule robots with different internal diameters and outer spiral capsule robots, using computational fluid dynamics (CFD) method, the operational performance indicators (i.e. axial thrust force, circumferential resisting moment and maximum pressure to pipeline wall) of spiral capsule robots are numerically calculated in the liquid–solid or liquid–liquid two-phase mixed fluid. By the orthogonal experimental optimization method, the optimum design of spiral capsule robots is obtained in the liquid–solid mixed fluid. The experimental verification has been also carried out. The results show that in the liquid–solid two-phase fluid, the axial thrust force and circumferential resisting moment of the spiral capsule robots decrease with the increase of the size or concentration of solid particles. In the same liquid–solid or liquid–liquid mixed fluid, the operational performance indicators of outer spiral robots are much higher than those of inner spiral robots, and the operational performance indicators of inner spiral robots with bigger internal diameters are higher than those with smaller internal diameters. Adding solid particles of high concentration in the pipeline containing liquid will reduce the drive performance of spiral capsule robots, but adding another liquid of high viscosity will improve the drive performance of spiral capsule robots.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3