Annual weed management in isoxaflutole-resistant soybean using a two-pass weed control strategy

Author:

Smith Andrea,Soltani NaderORCID,Kaastra Allan J.,Hooker David C.,Robinson Darren E.,Sikkema Peter H.

Abstract

AbstractTransgenic crops are being developed with herbicide resistance traits to expand innovative weed management solutions for crop producers. Soybean with traits that confer resistance to the hydroxyphenylpyruvate dioxygenase herbicide isoxaflutole is under development and will provide a novel herbicide mode of action for weed management in soybean. Ten field experiments were conducted over 2 years (2017 and 2018) on five soil textures with isoxaflutole-resistant soybean to evaluate annual weed control using one- and two-pass herbicide programs. The one-pass weed control programs included isoxaflutole plus metribuzin, applied PRE, at a low rate (52.5 + 210 g ai ha−1), medium rate (79 + 316 g ai ha−1), and high rate (105 + 420 g ai ha−1); and glyphosate applied early postemergence (EPOST) or late postemergence (LPOST). The two-pass weed control programs included isoxaflutole plus metribuzin, applied PRE, followed by glyphosate applied LPOST, and glyphosate applied EPOST followed by LPOST. At 4 weeks after the LPOST application, control of common lambsquarters, pigweed species, common ragweed, and velvetleaf was variable at 25% to 69%, 49% to 86%, and 71% to 95% at the low, medium, and high rates of isoxaflutole plus metribuzin, respectively. Isoxaflutole plus metribuzin at the low, medium, and high rates controlled grass species evaluated (i.e., barnyardgrass, foxtail, crabgrass, and witchgrass) 85% to 97%, 75% to 99%, and 86% to 100%, respectively. All two-pass weed management programs provided 98% to 100% control of all species. Weed control improved as the rate of isoxaflutole plus metribuzin increased. Two-pass programs provided excellent, full-season annual grass and broadleaf weed control in isoxaflutole-resistant soybean.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3