Strawberry, black medic (Medicago lupulina), and Carolina geranium (Geranium carolinianum) growth under light-limiting conditions

Author:

Sharpe Shaun M.ORCID,Yu Jialin,Boyd Nathan S.

Abstract

AbstractBroadleaf infestations interfere with Florida strawberry production. Broadleaf POST herbicide options applied atop the crop are limited to synthetic auxins and not suitable for conventional multi-cropping and organic systems. Reducing light access and interception during weed emergence may reduce interference. Light-limited growth of two problematic broadleaves, black medic and Carolina geranium, and the most commonly grown strawberry cultivar (‘Florida Radiance’), were examined in the greenhouse. The experimental design was completely randomized, and the trial was repeated. Black medic was susceptible to reductions in incoming solar radiation, wherein reducing the daily maximum available light from 331 to 94 µmol m−2 s−1 reduced leaf number and area by 93% and 89%, respectively. Carolina geranium growth was less susceptible to reduced-light treatments, with leaf area and number each reduced by 66% when light was reduced from 331 to 94 µmol m−2 s−1. Belowground, Carolina geranium biomass was similarly reduced between the 331 and 94 µmol m−2 s−1 treatments. Strawberry was relatively tolerant to shading at 155 µmol m−2 s−1, but further reductions did increase mortality. Shade-induced weed suppression is a promising alternative strategy for conventional and organic Florida strawberry production. Targeted application during periods of weed emergence may play a role within integrated pest management strategies. This approach is most feasible for black medic management but may be useful for Carolina geranium in concert with other strategies.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3