Influence of rhizosphere activity on litter decomposition in subtropical forest: implications of estimating soil organic matter contributions to soil respiration

Author:

Wu Xiaoqing,Huang Changjiang,Sha Liqing,Wu Chuansheng

Abstract

Abstract Litter decomposition plays an important role in the carbon cycle and is affected by many factors in forest ecosystems. This study aimed to quantify the rhizosphere priming effect on litter decomposition in subtropical forest southwestern China. A litter decomposition experiment including control and trenching treatments was conducted using the litter bag method, and the litter decomposition rate was calculated by litter dry mass loss. Trenching did not change soil temperature, but increased the soil water content by 14.5%. In this study, the interaction of soil temperature and soil water content controlled the litter decomposition rate, and explained 87.4 and 85.5% of the variation in litter decomposition in the control and trenching treatments, respectively. Considering changes in soil environmental factors due to trenching, the litter decomposition rates were corrected by regression models. After correction, the litter decomposition rates of the control and trenching treatments were 32.47 ± 3.15 and 25.71 ± 2.72% year–1, respectively, in the 2-year period. Rhizosphere activity significantly primed litter decomposition by 26.3%. Our study suggested a priming effect of rhizosphere activity on litter decomposition in the subtropical forest. Combining previous interaction effect results, we estimated the contributions of total soil organic matter (SOM) decomposition, total litter decomposition, and root respiration to soil respiration in the subtropical forest, and our new method of estimating the components of soil respiration provided basic theory for SOM decomposition research.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3