Microhabitat partitioning is driven by preferences, not competition, in two Costa Rican millipede species

Author:

Cooley Shane M.,Oldfield Ronald G.

Abstract

AbstractThe co-occurrence of similar species in a particular environment may be facilitated if they specialise on different microhabitats, reducing competition between them. In some cases, two species prefer the same microhabitat, but one is competitively excluded to its harsh margins. In this study, we assessed microhabitat preferences and competition between two species of millipedes in Costa Rica. (1) We observed them in the wild and found Nyssodesmus python most often on wood, less often on leaves, and rarely on rocks. Spirobolida was found most often on leaves, less often on wood, and never on rocks. (2) We tested their preferences in the lab and found that N. python preferred wood to rocks, wood to leaves, and rocks to leaves. Spirobolida preferred leaves to rocks, leaves to wood, and wood to rocks. (3) We tested interference competition by placing both species together in an arena in which they both had the same preference (wood vs. rocks). Both species chose to cohabitate in the same wood, indicating that one species did not directly exclude the other. In N. python and Spirobolida, co-occurrence is facilitated by differences in microhabitat preferences and not because competition forces one species out of its preferred microhabitat.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

Reference30 articles.

1. Why are there so many species in the tropics?

2. Practical keys to the orders and families of millipedes of the Neotropical region (Myriapoda: Diplopoda);Hoffman;Amazoniana: Limnologia et Oecologia Regionalis Systematis Fluminis Amazonas,1996

3. Mate-guarding, mating success and body size in the tropical millipede Nyssodesmus python (Peters)(Polydesmida: Platyrhacidae);Adolph;The Southwestern Naturalist,1995

4. The Competitive Exclusion Principle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3