Indentation Tests to Investigate Ice Pressures on Vertical Piers

Author:

Croasdale K. R.,Morgenstern N. R.,Nuttall J. B.

Abstract

Abstract Controlled field and laboratory tests were performed to investigate the relationship between ice strength and the maximum ice pressures on vertical piers. The apparatus used in the field tests consisted of a flat indentor (75 cm wide) which was pushed through the ice by hydraulic rams. 27 tests were conducted on lake ice up to one metre thick. Ice pressures in the range 2.5 to 5.0 MPa were obtained for ice in good initial contact with the indentor. The ice pressures exhibited little sensitivity to variations in temperature, ice thickness and strain-rate for the range 7.5 × 10-7 to 4.4 × 10-3 s-1. The average unconfined compressive strengths obtained in the laboratory were about 20% higher than the average field ice pressures. In addition, the laboratory strengths were found to be sensitive to temperature, and to strain-rate in the range 1 × 10-7 to 1 × 10-3 s-1. The confined compressive strength was two to three times the unconfined strength. The failure modes observed in the indentation tests were similar to those predicted (before the tests) by an upper-bound plasticity model. The ability of the model to relate small-scale ice strength to field ice pressures is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of river ice force calculation methods;Cold Regions Science and Technology;2023-05

2. Simulation of a two-dimensional ice crushing processes with the Mohr-Coulomb nodal split model;INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND MANUFACTURING SYSTEMS: ICMEMS2022;2023

3. A Finite Element Model for Compressive Ice Loads Based on a Mohr-Coulomb Material and the Node Splitting Technique;Journal of Offshore Mechanics and Arctic Engineering;2021-11-12

4. Probabilistic fatigue life of welded plate joints under uncertainty in Arctic areas;Journal of Constructional Steel Research;2021-01

5. Substantiations Use of the Specific Energy Ice Destruction for Calculation the Cyclic Ice Load Parameters to Sea Structures;IOP Conference Series: Earth and Environmental Science;2020-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3