Glacial Erosion of a High Arctic Valley

Author:

England John

Abstract

AbstractA large valley, ideally suited for “selective linear erosion” by ice, extends from the Kreiger Mountains to Tanquary Fiord, north–central Ellesmere Island. During the last glaciation, the outlet glacier at the head of the valley advanced 18 km and was at least 250 m thick where it contacted the sea in the lower valley. Erosion of bedrock inside the last ice limit is recorded by an abraded diabase dike, and by crag–and–tail features developed in limestone. During deglaciation (7800 B.P.), melt–water streams along the ice margin incised a large alluvial fan that pre–dates the last glaciation. The fan shows little alteration by the over–riding ice and its final erosion by the melt–water streams incised, but did not remove, its original ice–wedge polygons.The preservation of the fan indicates that the glacier was locally non–erosive and that it probably advanced across the fan by over–riding a protective frontal ice apron. Although it is commonly assumed that such alluvial fans occupying glaciated valleys are of post–glacial age, this need not be the case in permafrost terrain. In fact, at this site, there has been a net increment of alluvium versus glacial erosion or deposition spanning the last glacial cycle. The paper discusses the processes of erosion associated with sub–polar glaciers and questions whether erosion by them or more pervasive ice is responsible for such High Arctic valleys and fiords.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3