Snow stability during rain

Author:

Conway H.,Raymond C. F.

Abstract

AbstractThe mechanical response of snowpacks to penetrating liquid water was observed over two winter seasons in the central Cascade Mountains, Washington, U.S.A. Following the onset of rain, three evolutionary regimes of snow behavior were identified: immediate avalanching, delayed avalanching, and return to stability. Immediate avalanching occurred within minutes to an hour after the onset of rain and the time of release could be predicted with an accuracy of less than an hour from meteorological forecasts of the transition from snow to rain. These avalanches usually slid on surfaces substantially deeper than the level to which water or associated thermal effects had penetrated. The mechanism by which alteration of a thin skin of surface snow can cause deep slab failure has not been identified, but several possibilities involving a redistribution of stress are discussed. Delayed avalanches released several hours after rain started. The delay varied, depending on the rate of increasing stress associated with the additional precipitation, and on the time taken for water to penetrate and weaken a potential sliding layer. It is difficult to define accurately the evolving distribution of liquid water in snow which makes it difficult to predict accurately the time of avalanching. Depth profiles of the rate of snow settlement showed that a wave of increased strain rate propagated into the snow in response to penetrating water. This type of measurement could prove useful for predicting when snow stability is reaching a critical condition. Avalanche activity was rare after continuation of rain for 15 h or more. This return to stability occurred after drainage structures had evolved and penetrated the full depth of the snowpack. Established drain channels route water away from potential sliding surfaces and are also relatively strong structures within a snowpack.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3