Application of Numerical Transient Fluid Dynamics to Snow Avalanche Flow. Part I. Development of Computer Program Avalnch

Author:

Lang T. E.,Dawson K. L.,Martinelli M.

Abstract

AbstractA two-dimensional, transient fluid-dynamics computer code has been modified for specific application to the avalanche-runout problem. This code, called AVALNCH, permits the separation of path geometry effects from such flow factors as friction and viscosity. The longitudinal profile of the avalanche path is divided into cells, 10 to 20 m long, each of which can be assigned specific values for slope gradient, surface friction, and internal kinematic viscosity. The program gives average avalanche speed cell-by-cell down the path and the location and depth of avalanche debris. Internal kinematic viscosity and surface friction were modeled on an avalanche path of simple geometry and were found to be of about equal significance in predicting runout distance. Additionally, surface friction is represented by an exponentially increasing function as speed decreases in the runout zone, in order to model observed avalanche terminal-motion characteristics. Program AVALNCH is reduced to a basic algorithm that is efficient to run, and contains the essential mechanics to model avalanche flow accurately. The most pressing need is for more physical data to permit the matching of program output to observed results under a variety of conditions.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3