Author:
Leb. Hooke Roger,Hudleston Peter J.
Abstract
AbstractLaboratory studies suggest that neither bubbles nor dirt particles migrate rapidly enough in glacier ice to be responsible for the alternating layers of bubbly and clear ice or dirty and clean ice which constitute foliation. We therefore suggest that these variations in bubble or dirt content are inherited from primary inhomogeneities such as may occur in sedimentary stratification in the accumulation region, in crevasse fillings, or during debris entrainment at the base of the glacier: the appearance of these inhomo-geneities is later modified by strain during flow to produce foliation. We consider six types of inhomogeneity, or components of foliation, and show that, at the very large total strains expected in glaciers, all are eventually flattened, stretched out, and rotated to form a layered structure roughly perpendicular to the direction of maximum total shortening. Most characteristics of observed foliation can be explained by this hypothesis. For example, in the marginal zones of polar ice sheets the rapid decrease in dip of foliation with depth and with distance up-glacier from the margin can he explained by a model in which the foliation is assumed to be nearly parallel to the base of the glacier some distance from the margin, and is deformed passively with the ice thereafter. However, some observations of cross-cutting foliations may require localized inhomogeneous shear parallel to the "new" foliation.
Publisher
Cambridge University Press (CUP)
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献