Propagation of a Plastic Wave in Snow

Author:

Wakahama Gorow,Sato Atsushi

Abstract

AbstractWhen snow is pushed very fast by a moving body a plastic wave is generated at the head of the body. If the velocity of the moving body becomes close to that of the plastic wave, the snow may exert a great resistive force against the body as predicted by Yosida. It is, therefore, very important to study the dynamic behaviour of snow at a high rate of deformation, such as takes place when a snow plough is used on the highway, a train runs on a railroad covered with snow, or an avalanche occurs. Hence, this study is concerned with the safety and maintenance of winter traffic and transportation, and also with the generation and propagation of an avalanche. In order to clarify the detailed processes of the deformation of snow at high rates, laboratory experiments were made by compressing snow at high speed. The propagation of a plastic wave through snow was observed by using a high-speed camera and a pressure-detecting device. Analyses of the data obtained gave the velocity of the plastic wave for various kinds of snow whose density ranged from 0.17 to 0.46 Mg m-3and free-water content from o to 17%, whereby studies were made into the dependences on the density and free-water content of the velocity of the plastic wave. When the impact velocity was 4.3 ± 0.2 m s-1, the wave velocity ranged from 5 m s-1for a new snow to 12 m s-1for a fine-grained, well-settled snow. The plastic-wave velocity in wet snow was, in general, smaller than that in dry snow of the same density. Changes in density and structure of snow associated with the passage of a plastic wave were studied and discussed. The pressure at the wave front was measured; values of 0.1-0.3 bar were obtained, these are of the same order as the value estimated from theoretical formulae. The plastic-wave velocity was also observed for a confined snow, which showed a larger velocity and plastic strain than an unconfined snow.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shock response of snow;Journal of Applied Physics;1993-05-15

2. Review of surface friction, surface resistance, and flow of snow;Reviews of Geophysics;1982

3. A Stress-Wave Generator for Snow and Ice Studies;Journal of Glaciology;1981

4. An Analysis of Non-Steady Plastic Shock Waves in Snow;Journal of Glaciology;1980

5. Numerical Modelling of Icing on Power Network Equipment;Atmospheric Icing of Power Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3