Author:
Perovich Donald K.,Grenfell Thomas C.
Abstract
AbstractLaboratory experiments were performed to determine the optical properties of young salt ice and to examine correlations between the optical properties and the state of the ice. Ice was grown at different temperatures (–10, –20, –30, and –37°C) from water of different salinities (0, 16, and 31‰). The experiments were conducted in a cylindrical tank 1 m in diameter designed to approximate natural ice growth and to permitin situoptical measurements. Observed incident, reflected, and transmitted irradiances were used in conjunction with a modified Dunkle and Bevans photometric model to determine spectral albedos and extinction coefficients. Cold ice only 0.25 m thick had albedos which were comparable to the values for 2 to 3 m multi-year ice examined by previous researchers during the summer melt season; extinction coefficients were 1.5 to 15 times greater. As the ice temperature and hence brine volume decreased, both albedo and extinction coefficient increased; when the ice temperature dropped below the eutectic point, they increased sharply. In addition, ice grown at lower air temperatures had greater albedos and extinction coefficients even when ice temperatures were the same. Variations in the optical properties of the ice are determined by changes in the amount of brine and its distribution; thus the optical properties of salt ice depend not only on ice temperature but on initial growth rate. Variations in ice salinity over the range 4‰ to 14‰ produced no detectable changes in the optical properties.
Publisher
Cambridge University Press (CUP)
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献