The Kinetic Friction of Snow

Author:

Colbeck S.C.

Abstract

Abstract Three components of the kinetic friction of snow are described but only the lubricated component of friction is treated in detail. This component depends upon the thickness of water films which support a slider on snow grains over a small fraction of its area. The thickness of the film decreases with ambient temperature in a manner which is sensitive to the thermal conductivity of the slider. The minimum value of friction at any temperature is reached at an intermediate value of speed because friction decreases as the slider first begins to move and the films form but then increases at higher speeds because of the shear resistance. At sub-freezing temperatures a small area in the front part of the slider is dry and the friction is high. Once the water film is formed it increases in thickness towards an equilibrium value which can be very sensitive to slider properties, speed, and temperature. It appears that the mechanisms may be very different for hydrophobic and hydrophilic sliders. From the equations derived here it is clear why friction decreases with repeated passes over the same snow.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Studies of Tire Frictional Characteristics on the Snowy Road;SAE Technical Paper Series;2023-04-11

2. Friction coefficient measurements on jumping ski patterned running surfaces;Tribology International;2022-11

3. Nanotextured surfaces with enhanced ice-traction and wear-resistance;Composites Part B: Engineering;2022-06

4. Prediction of wet snow shedding from surfaces under various heat transfer modes;Applied Thermal Engineering;2022-03

5. Identifying ski roughness using data driven approaches;2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2021-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3